ND1119:2006/06

(TSG/INFO/019)

UK INTERCONNECT USE OF SIGNALLING FOR PACKET-BASED PSTN/ISDN
TSG INFORMATION DOCUMENT NUMBER 019
UK INTERCONNECT USE OF SIGNALLING FOR PACKET-BASED PSTN/ISDN

All enquiries about distribution, reproduction, changes and clarifications should be addressed in the first instance to the Chairman of the NICC/PNO-IG/ISC at the address on the title page.

DISCLAIMER The contents of this specification have been agreed by the NICC. The information contained herein is the property of the NICC and is supplied without liability for error or omissions.

NETWORK INTEROPERABILITY CONSULTATIVE COMMITTEE
Ofcom
2a Southwark Bridge Road
London SE1 9HA
Copyright

All right, title and interest in this document are owned by Ofcom and/or the contributors to the document unless otherwise indicated (where copyright be owned or shared with a third party). Such title and interest is protected by United Kingdom copyright laws and international treaty provisions.

The contents of the document are believed to be accurate at the time of publishing, but no representation or warranty is given as to their accuracy, completeness or correctness. You may freely download, copy, store or distribute this document provided it is not modified in any way and it includes this copyright and liability statement.

You may not modify the contents of this document. You may produce a derived copyright work based on this document provided that you clearly indicate that it was created by yourself and that it was derived from this document and provided further that you ensure that any risk of confusion with this document is avoided.

Liability

Whilst every care has been taken in the preparation and publication of this document, NICC, nor any committee acting on behalf of NICC, nor any member of any of those committees, nor the companies they represent, nor any person contributing to the contents of this document (together the “Generators”) accepts liability for any loss, which may arise from reliance on the information contained in this document or any errors or omissions, typographical or otherwise in the contents.

Nothing in this document constitutes advice. Nor does the transmission, downloading or sending of this document create any contractual relationship. In particular no licence is granted under any intellectual property right (including trade and service mark rights) save for the above licence to copy, store and distribute this document and to produce derived copyright works.

The liability and responsibility for implementations based on this document rests with the implementer, and not with any of the Generators. If you implement any of the contents of this document, you agree to indemnify and hold harmless the Generators in any jurisdiction against any claims and legal proceedings alleging that the use of the contents by you or on your behalf infringes any legal right of any of the Generators or any third party.

None of the Generators accepts any liability whatsoever for any direct, indirect or consequential loss or damage arising in any way from any use of or reliance on the contents of this document for any purpose.

If you have any comments concerning the accuracy of the contents of this document, please write to:

The Technical Secretary,
Network Interoperability Consultative Committee,
Ofcom,
2a Southwark Bridge Road,
London SE1 9HA.
0.2 Contents

NOTICE OF COPYRIGHT AND LIABILITY..3

0.2 Contents..4

0.3 History...6

0.4 Issue Control ..6

0.5 Normative References ...7

0.6 Informative References ..7

0.7 Glossary of terms...8

0.7.1 Abbreviations ...8

0.7.2 Definitions...8

0.8 Scope...9

0.8.1 Future Work Items..9

1 INTRODUCTION ... 10

2 GENERAL ..11

2.1 Guidelines on Interconnect Network Architectures ...11

2.1.1 Network architectures supported by UK interconnect standards ..11

2.1.2 Quasi-associated (STP or SGW) signalling - STP one side...12

2.1.3 Associated signalling ..12

2.1.4 Quasi-associated (STP) signalling - STP each side ...13

2.2 Guidelines on IP Security Choices...13

2.3 Guidelines on IP Address Assignment...14

3 SIGNALLING APPLICATION PROTOCOLS..15

4 SIGNALLING TRANSPORT PROTOCOLS..16

4.1 Protocol Architectures ..16

4.1.1 Bearer-related Protocol Architectures ..16

4.1.2 Non-bearer-related Protocol Architectures ...16

4.2 SCTP Timers and Parameters information and guidelines on choosing values17

4.2.1 RTO.Initial ..17

4.2.2 RTO.Min ..17

4.2.3 RTO.Max...17

4.2.4 RTO.Alpha...17

4.2.5 RTO.Beta...17

4.2.6 Valid.Cookie.Life ..17

4.2.7 Association.Max.Retrans ..18

4.2.8 Path.Max.Retrans ..18

4.2.9 Max.Init.Retransmits ...18

4.2.10 HB.interval ..18
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.11</td>
<td>SACK period</td>
</tr>
<tr>
<td>4.2.12</td>
<td>SACK frequency</td>
</tr>
<tr>
<td>4.2.13</td>
<td>MTU Size</td>
</tr>
<tr>
<td>4.2.14</td>
<td>Consequences of choosing either IPv4 or IPv6 address types</td>
</tr>
</tbody>
</table>

4.3 Guidelines for choosing the number of SCTP paths to a given destination

4.4 Use of M3UA ‘Error’ message type

4.5 Nodal congestion control

4.6 M3UA message distribution failure at the Signalling Gateway

4.7 M3UA load-balancing across associations

4.8 Guidelines for choosing the number of M3UA streams
0.3 History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date of Issue</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue 1 Draft 1</td>
<td>14th November 2002</td>
<td>Initial version</td>
</tr>
<tr>
<td>Issue 1 Draft 2</td>
<td>12th December 2002</td>
<td>Updated according to review comments recorded at the TP Working Party meeting on 11th December 2002.</td>
</tr>
<tr>
<td>Issue 1 Draft 3</td>
<td>11th March 2003</td>
<td>Updated according to review comments recorded at the TP Working Party meeting on 4th February 2003.</td>
</tr>
<tr>
<td>Issue 1 Draft 4</td>
<td>30th May 2003</td>
<td>Updated according to review comments recorded at the TP Working Party meeting on 30th April 2003.</td>
</tr>
<tr>
<td>Issue 1 Draft 5</td>
<td>31st October 2003</td>
<td>Updated according to comments received by 'phone from Karen King on 23rd July 2003.</td>
</tr>
<tr>
<td>Issue 1 Draft 6</td>
<td>6th April 2004</td>
<td>Correction of definition of SACK frequency. Issue raised in TP WP e-room.</td>
</tr>
<tr>
<td>Issue 1 Draft 8</td>
<td>22nd June 2006</td>
<td>Updated according to review comments received by e-mail from UK participants, prior to June 9th.</td>
</tr>
<tr>
<td>Issue 1 Draft 9</td>
<td>26th July 2006</td>
<td>Updated according to review comments received during the review for TSG approval.</td>
</tr>
<tr>
<td>Issue 1</td>
<td>31st July 2006</td>
<td>Approved for issue.</td>
</tr>
</tbody>
</table>

0.4 Issue Control

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ISSUE</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 1</td>
<td>14th November 2002</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 2</td>
<td>12th December 2002</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 3</td>
<td>11th March 2003</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 4</td>
<td>30th May 2003</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 5</td>
<td>31st October 2003</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 6</td>
<td>6th April 2004</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 7</td>
<td>19th May 2006</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 8</td>
<td>22nd June 2006</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0 Draft 9</td>
<td>26th July 2006</td>
</tr>
<tr>
<td>All</td>
<td>Issue 1.0</td>
<td>31st July 2006</td>
</tr>
</tbody>
</table>
0.5 Normative References

[1] ND1012:2006/06 (PNO-ISC/SPEC/012 Issue 2) Interconnect Stream Control Transmission Protocol (SCTP) and Adaptation Layers for UK Interconnect

0.6 Informative References

1 Internet-Drafts are temporary IETF documents and may be made obsolete or superseded within 6 months of publication. They are listed for purely informational purposes.
0.7 Glossary of terms

0.7.1 Abbreviations

ASP Application Server Process
ATM Asynchronous Transfer Mode
BICC Bearer Independent Call Control
B-ISUP Broadband - ISDN User Part
IETF Internet Engineering Task Force
IP Internet Protocol
ISC Interconnect Standards Committee (replaced by TSG WP)
ISDN Integrated Services Digital Network
IPSP IP Server Process
ISUP Integrated Services User Part (of SS7)
ITU-T International Telecommunications Union - Telecommunications standardization sector
IUP Interconnect User Part
M2PA MTP 2 Peer-to-peer Adaptation layer
M3UA MTP 3 User Adaptation layer
MTP L1 Message Transfer Part Level 1
MTP L2 Message Transfer Part Level 2
MTP L3 Message Transfer Part Level 3
NICCC Network Interoperability Consultative Committee
PDU Protocol Data Unit
PLMN Public Land Mobile Network
PNO Public Network Operators (replaced by TSG)
PNO-ISC Public Network Operators’ – Interconnect Standards Committee (replaced by TSG)
PSIN Public Switched Telephone Network
RFC Request for Comments
RTD Round Trip Delay
RTO Retransmission TimeOut
RTT Round Trip Time
SCCP Signalling Connection Control Part (of SS7)
SCTP Stream Control Transmission Protocol
SEP Signalling End Point
SG or SGW Signalling Gateway
SGP Signalling Gateway Process
SMP Significant Market Power
SPR Signalling Point with Relay functionality
SS7 Signalling System number 7
SSCOP Service Specific Connection Oriented Protocol
STP Signalling Transfer Point
SUA SCCP User Adaptation layer
TC Transaction Capabilities
TDM Time Division Multiplexing
TFC TransFer Controlled (MTP Network Management message type)
TI-SCCP Transport Independent SCCP
TLS Transport Layer Security
TP Transport Protocol
TSG Technical Steering Group
UK United Kingdom of Great Britain and Northern Ireland
VCI Virtual Circuit Identity
WP Working Party

0.7.2 Definitions

IPsec Security Architecture for the Internet Protocol
0.8 Scope

The purpose of ND1119 is to give information about the signalling application and signalling transport protocols specified in reference /1/. These signalling protocols are standardised for use across a UK national interconnect between Public Networks, in order to support packet-based PSTN/ISDN services.

This document was originally written to support the use of SCTP to carry BICC. The UK specification for BICC was completed, but it was agreed in NICC that this would not be published. Hence any references to BICC in this issue of ND1119 should be disregarded.

0.8.1 Future Work Items

See section 2.1.1 for future work items.

END OF ND1119 §0
1 Introduction

This document provides information supplemental to that specified in reference /1/ for interconnect use of IP. The information is structured according to whether it concerns signalling applications, signalling transport or is general to both.

The information is intended for use by designers of signalling applications that require use of signalling transport protocols, as well as for use by network operators needing to engineer signalling transport networks and to configure signalling applications for UK national network interconnect.

This document will be revised as necessary and in accordance with the NICC/TSG workplan to include information appropriate to enhancements to the relevant signalling protocols.

END OF ND1119 §1
2 General

This section gives general information about Signalling Networks for packet-based PSTN/ISDN services.

2.1 Guidelines on Interconnect Network Architectures

Note that the term ‘packet-based’ does not exclusively mean IP technologies, however this section covers only IP technologies.

In general there will be two types of network using IP technology:
- hybrid networks of TDM and IP, having evolved from TDM-only networks
- IP-only, being new entrants to the market

A pair of IP-only networks might wish to use an IP-based signalling transport interconnect to avoid the addition of any TDM technology, although if this isn’t possible (for whatever reason), then there remains the last resort of implementing a SS7 TDM interconnect.

A pair of hybrid networks might wish to use an IP-based signalling transport interconnect to overcome, for example, bandwidth limitations or to avoid SS7 over TDM (conversion).

An interconnect between an otherwise IP-only and a hybrid network might use either TDM or IP-based signalling transport interconnects, depending on what is mutually possible. Or there might even be regulatory pressure on SMP hybrid networks to provide a signalling transport gateway as a service to IP-based start-ups.

The diagrams that follow show the logical topology of the signalling transport networks. The topology and construction of the underlying physical, IP or transmission networks are not described and are outside the scope of this document.

2.1.1 Network architectures supported by UK interconnect standards

The configurations supported by the current UK interconnect standards are:
- M3UA client-server model, exemplified in section 2.1.2

The TP WP may study the following when the relevant IETF documents are stable and as required by the TSG:
- M3UA peer-to-peer model, exemplified in section 2.1.3
- Standardisation of M2PA for UK national interconnects. See section 2.1.4
- Standardisation of M3UA extensions for SG to SG for UK national interconnects. See section 2.1.4
2.1.2 Quasi-associated (STP or SGW) signalling - STP one side

This asymmetrical network architecture arises if Network 1 provides a signalling gateway or some signalling gateways as a service for Network 2. The means of interconnect is the M3UA in client-server mode.

This configuration is supported by the current UK IP-based interconnect standards.

2.1.3 Associated signalling

Figure 2-1 – Quasi-associated Signalling - STP one side

Figure 2-2 – Associated Signalling
This is the basic scenario, where the means of interconnect is the M3UA in peer-to-peer mode. The technology type of the interconnected networks could be TDM, with ISUP as the signalling application and IP as the signalling transport.

This configuration is NOT supported by the current UK IP-based interconnect standards, because the peer to peer model of reference /10/ requires clarification by the IETF or, if this is not forthcoming, by the UK TP Working Party.

2.1.4 Quasi-associated (STP) signalling - STP each side

The means of interconnect in this scenario is M3UA in an extended peer-to-peer mode. The nodes that are shown as STPs could instead be SPR nodes, with SCCP as the signalling application, which would be a typical arrangement for interconnect between UK PLMNs.

This configuration is NOT supported by the current UK IP-based interconnect standards, because reference /10/ does not support SG to SG.

2.2 Guidelines on IP Security Choices

It is expected that security for the underlying IP network will be provided by some or all of the following techniques:

- Physical access control
- IPSec - see reference /3/
- TLS (Transport Layer Security) - see references /2/ and /5/

The standardisation of security measures is outside the scope of this document, however if TLS is chosen, then the effect on the SCTP data payload should be taken into account.

The potential problems of IPsec compared with TLS are that:

- Re-keying has the potential to cause interruption to service
- Management re-configuration requires potentially significant manpower.

These potential problems arise because each multi-homed SCTP association results in multiple security associations. For further information and proposed solutions, see references /4/ and /9/.
The recommended default is currently outside the scope of this document, pending work in ETSI on security.

2.3 Guidelines on IP Address Assignment

Only selected combinations of IP addresses and Port identities should be allowed.

END OF ND1119 §2
3 Signalling Application Protocols

This section gives information about Signalling Application Protocols for packet-based PSTN/ISDN services.

Information, if any, about signalling application protocols for packet-based PSTN/ISDN is to be written by the AP Working Party.

END OF ND1119 §3
4 Signalling Transport Protocols

This section gives information about Signalling Transport Protocols for packet-based PSTN/ISDN services.

4.1 Protocol Architectures

The following options are considered to be appropriate for UK interconnects for packet-based PSTN/ISDN. Of course, other choices may be used by bi-lateral agreement.

4.1.1 Bearer-related Protocol Architectures

Option A, using the MTP3, MTP2, MTP1 stack will be maintained as a signalling transport option. It is suitable as a last resort for implementing an interconnect (e.g. for low signalling load) and it is supported by references /6/ and /7/.

Option B includes MTP3b in order to cater for more complex networks. SSCOP itself does not support alternative routing, and this was felt to be a significant limitation. This option is no longer being actively considered for UK interconnects for packet-based PSTN/ISDN.

Option C is supported by reference /1/. Currently M3UA is more appropriate to a protocol architecture shown in sections 2.1.2 or 2.1.3, whilst M2PA is more appropriate to the protocol architecture shown in section 2.1.4, because M3UA is currently unable to support STP traffic. That is to say, M3UA is currently not specified for use between SGWs. In principle, M3UA supports SEP to SEP (peer to peer) as well as SEP to SGW (client server), but it is not always clear how to interpret some of the M3UA requirements in the SEP to SEP case. The standardisation of option C was given higher priority than option D, due to the relative maturity of the IETF documents, and is therefore the default signalling network architecture for UK interconnects for packet-based PSTN/ISDN.

Option D is not yet supported for UK Interconnects. Although it is the simplest method of using IP to carry signalling and the IETF document (reference /11/) is simple in concept, this option is an answer to a specific problem (e.g. wideband links), rather than a general answer to interconnect.

Note that the option of SCTP without MTP3 was excluded, because it is only appropriate in a fully IP environment, where interworking with TDM networks is not required.

4.1.2 Non-bearer-related Protocol Architectures
The information in section 4.1.1 is equally applicable to these options.

TI-SCCP and SUA are not required, provided MTP3 or MTP3b functionality is available, but they may be considered in future. SUA is not currently identified as a UK interconnect requirement.

4.2 SCTP Timers and Parameters information and guidelines on choosing values

The default timer and parameter values in reference /8/ are not appropriate in a SS7 environment, so the following values are recommended for UK interconnect (PSTN replacement):

4.2.1 RTO.Initial

This is the value to use for RTO until an RTT measurement has been made.

100 milliseconds.

4.2.2 RTO.Min

This is the minimum value that RTO may take.

10 milliseconds.

4.2.3 RTO.Max

This is the maximum value that RTO may take.

200 milliseconds.

4.2.4 RTO.Alpha

This is a parameter that contributes to the calculation of the value to be used for RTO.

1/8

4.2.5 RTO.Beta

This is a parameter that contributes to the calculation of the value to be used for RTO.

1/4

4.2.6 Valid.Cookie.Life

This is the time allowed completely to setup an association. The value of this parameter has no direct effect on the grade of service of the signalling network.

60 seconds.
4.2.7 Association.Max.Retrans

This is the maximum number of retransmission attempts for a given association, which may comprise multiple paths. Its value should be greater than 'Path.Max.Retrans' (see 4.2.8).

10 attempts per association.

4.2.8 Path.Max.Retrans

This is the maximum number of retransmission attempts on a single path. It is effectively the maximum number of accumulated RTO delays experienced by a single message.

5 attempts (per destination address).

4.2.9 Max.Init.Retransmits

This is the maximum number of attempts at initialising an association. The value of this parameter has no direct effect on the grade of service of the signalling network.

8 attempts.

4.2.10 HB.interval

This timer values governs the 'Heartbeat' procedure, which gives protection against latent faults. It is functionally equivalent to the MTP signalling link test procedure, which has a periodicity of 3 to 6 seconds.

3 seconds

4.2.11 SACK period

This is the maximum delay before generating an acknowledgement after receipt of a packet containing aDATA chunk.

0 milliseconds (i.e. no artificial delay is to be added).

4.2.12 SACK frequency

This defines how often a SACK is generated for every n packets received containing one or more DATA chunks within the SACK period.

1 (i.e. every packet containing any data chunks is to be acknowledged individually).

4.2.13 MTU Size

This is the maximum size of each packet in any transmission, specified in octets.

1500 is suitable assuming that the transmission is using Ethernet.

4.2.14 Consequences of choosing either IPv4 or IPv6 address types

The 'INIT' and 'INIT ACK' chunk sizes are large enough to accommodate multiple IP addresses, however they do have a finite size, so if the number of IP addresses configured is large, then it is important to check that they do not exceed the chunk size. IPv6 addresses, being larger than IPv4 addresses, will reach the limit sooner.
4.3 Guidelines for choosing the number of SCTP paths to a given destination

The chosen number of IP addresses for a given association should be a number that is supported by the implementations at each end of that association.

A node should make use of multiple IP addresses if known for multi-homing. Whether this is done within the SCTP or is initiated by the SCTP’s user is implementation dependent.

4.4 Guidelines for M3UA

4.4.1 Use of M3UA ‘Error’ message type

A permitted option is to provide the supported version in the ‘diagnostic information’ parameter of the Error message.

4.4.2 Nodal congestion control

There is a greater risk of nodal overload with IP-based signalling transport, because the available bandwidth between a pair of nodes is no longer constrained to 64kbit/s. Therefore the importance of effective nodal congestion controls is even greater than for SS7 signalling transport. The following clauses give guidance on the signalling protocol options by which a node might notify other nodes that it is (at risk of) being overloaded by the presented signalling load.

For the network configuration shown in 2.1.2, the important elements are:

- The SGP and ASP are aware of their local nodal load, such an implementation-dependent means can either make them send SCON messages or cause a reduction in the credit window of their underlying SCTP association;
- The ASP informs the User Parts using the MTP-STATUS_Indication, if either it receives SCON messages or an implementation-dependent mechanism indicates excessive occupancy of the underlying SCTP association;
- The User Part has an effective method of reducing its outgoing signalling traffic (this requirement is the same as for SS7 signalling transport);
- The SGP either sends TFC messages concerning the AS’s own pointcode or causes a reduction of the rate at which its underlying MTP Level 2 acknowledges incoming MSUs, if either it receives SCON messages or an implementation-dependent mechanism indicates excessive occupancy of the underlying SCTP association.

4.4.3 M3UA message distribution failure at the Signalling Gateway

The behaviour if no active ASP is available is a nodal function, but the layer management should be informed if the received messages are discarded. The use of buffering is not appropriate, because it may cause excessive signalling delay.

4.4.4 M3UA load-balancing across associations

Assuming that:

- all associations have an equal end-to-end bandwidth and latency for all paths;
- equal processing capacity is provided across all ASPs;

then M3UA should use an algorithm that produces an even distribution for transmitting message across associations.

Any variance from the above assumptions needs to be negotiated.
4.4.5 Guidelines for choosing the number of M3UA streams

If delivery in sequence is NOT required (equivalent to SCCP protocol class 0), then only 1 stream need be used in addition to stream 0, without incurring 'head of line' blocking. (Stream 0 should not be used for data transfer.)

END OF ND1119 §4

END OF ND1119